

Electron-Beam Microanalysis for Failure Analysis

Dr. Patrick Camus

Failure Analysis - Definition

- Investigation of a material to determine the root cause of unexpected performance.
- Investigation includes imaging and may include chemical analyses.
- Imaging analysis can include a range of magnifications and a number of incident radiations.
- Chemical analysis could be in-situ, specimen removal, or complete "destruction" of sample.

Failure Analysis Techniques

- Typical imaging techniques include:
 - Visual inspection
 - Optical microscopy
 - Ultrasonic
 - X-ray imaging
 - Electron Beam microscopy
- Chemical analyses include:
 - X-ray emission
 - Optical emission
 - Chemical dissolution
 - Plasma / optical

Electron-Beam Techniques

- Scanning electron microscopy (SEM) Imaging
 - Advantages are large depth of focus of image
 - Spatial control of electron beam
- Energy dispersive spectroscopy (EDS) X-ray elemental analysis
 - Be to U detection at reasonable spectral resolution
- Wavelength dispersive spectroscopy (WDS) X-ray elemental analysis
 - High spectral resolution but serial collection
- Electron back-scattered diffraction (EBSD) crystallography analysis
 - Orientation and phase analyses in SEM

Purpose of Webinar

 Application of modern electron-beam microanalysis techniques to investigate the microstructure and microchemistry anomalies that might have contributed to a failure in 2 metal samples.

Equipment

- Field-Emission (FE) SEM
- NORAN System 7 microanalysis system
- UltraDry EDS detectors
 - Dual 30 mm² active area SDD mounted 90 from each other (SW and SE on electron image)
- MagnaRay WDS spectrometer
- QuasOr EBSD detector

Analysis Methods

- EDS
 - Spectral Imaging
 - Elemental mapping
 - Phase analysis
- WDS
 - Spectral acquisition
 - Mapping acquisition
- EBSD
 - Crystal identification
 - Phase mapping

Spectral Imaging Definition

- Electron image with x-ray data cube
 - Full x-ray spectrum at each scan location (position in map)

Spectral Imaging Acquisition

Multi-frame collection

Acquisition times are now measured in minutes,

possibly seconds.

An analyst can cover more area in less time.

Methods of Spectral Imaging Analysis

- Image-plane analyses
 - Spectral extractions
- Energy-axis analysis
 - Elemental maps
- Whole-cube analyses
 - Phase analysis
 - Alloy, compound, mineral

Traditional Spectral Imaging Analyses

Image-plane analyses

Spectral extractions

Energy-axis extractions

Elemental maps

Automated Phase Analysis

- Multivariate Statistical Analysis (MSA) + Phase isolation + Phase labeling
 - No user-selection of elements and maps necessary
 - Whole spectra are analyzed.
 - Peak overlaps are typically not a limitation
 - Designed for low intensity (short acquisition time, 50-200 cpp) data sets
 - Low-pixel count phases have equal weighting.
 - Phase labeling compares phase spectra with user database of labeled spectra
 - Every analyst obtains the same answer
 - Decades of experience are not required to obtain the correct answer

The analyst has the highest confidence that every unique feature is found in the data set

COMPASS MSA Results

- Whole SI data-cube reduced to pairs of Map-Spectrum results
 - Each unique alloy, compound, or mineral spectrum is assigned to a map

 High confidence that every analyst gets the same answer, the right answer

Phase Results

- Binary maps of alloy, compound, or mineral distributions from COMPASS
- Spectra extracted from SI data cube
- Phase labels defined by best match to database

Microanalysis of a Failed Spring

Experimental Conditions

- 20 kV beam voltage
- Unmounted fractured sample
- 12 nA Beam current
- 45% electronics deadtime
- 76k cps Output count rate from dual EDS detectors
- Acquisition types, termination criteria and times
 - EDS Spectral
 - 10k VFS = ~ 1-3 seconds
 - WDS Spectral
 - 2 eV steps for 1 second
 - EDS Spectral Imaging
 - 100 x-ray counts per pixel => ~ 70-90 seconds acquisition
 - Phase analysis takes additional 1 minute

Electron Image

Effect of Surface Roughness on EDS Maps

- Coarse fracture surface
 - Huge potential shadows in x-ray maps
 - Understanding Chamber+Detector geometry is critical
- Subtle surface roughness
 - Intensity variation or contrast is not composition effect
- Dual-EDS detectors reduce apparent surface effects

Spectral Imaging Phase Maps

- Many different type of particles in many locations.
- Mapping is very efficient in finding all of the unique particles.

Phase Spectra

Multiple Particles 1

- Phase analysis finds all compounds.
- Point analyses may miss some compounds.

Multiple Particles 2

- Phase analysis finds all compounds.
- Point analyses may miss some compounds.

Fe-0 Si-Al-0

Multiple Particles 3

- Phase analysis finds all compounds.
- Point analyses may miss some compounds.

Ca-Mg-O
Si-O
Fe-S
Al-O
Ca-Si-O
Ca-Si-S-O

Fe-O Particle Analysis

SW All x-rays

 Surface topology will cause difficulties with shadowing. SE All x-rays

Fe-O Particle – EDS

Fe-O Particle – EDS + WDS

Fe-O Particle – Low-Energy EDS + WDS

Fe-O Particle – Other Phases

Zn Particle Analysis

Zn-K Map

Zn Particle - EDS

Zn Particle – EDS + WDS

Zn Particle – Low Energy EDS + WDS

Spring Sample Summary

- Fracture surfaces cause shadowing effects
 - Dual EDS detectors can be useful
- Many particles with a variety of chemistries
 - Most are multi-element compounds
- Many have the same contrast as the background
 - Mapping is more useful and time efficient than point analyses
- Any of these particles could have caused crack initiation

Microanalysis of a Failed Aerospace Component

Experimental Conditions

- 20 kV beam voltage
- Unmounted polished sample
- 30 nA beam current
- Acquisition types, termination criteria and times
 - EDS
 - 256 pixels
 - 100 counts per pixel termination
 - EBSD Points
 - 1 second exposure
 - Concurrent EDS spectrum
 - EBSD Mapping
 - 128 pixels
 - 40 patterns per second, ~ 5 minute acquisition
 - Concurrent EDS SI

Elemental Distributions – High Magnification

- Bright and dark particles
- Bright particles seem to be Nb and Mo

True Elemental Distributions – Quantitative Mapping

- Bright particles are Nb rich and contain no Mo!
 - Quantitative maps are REQUIRED for maps when elemental peaks overlap.

WDS Peak Deconvolution

 WDS spectral resolution is significantly better than EDS spectral resolution.

 Elemental confirmation of Nb-L and Mo-L spectral peak overlap.

WDS Mapping

 WDS Spectral resolution provides true elemental distribution of peak-overlapped elements.

Low Energy Peak Verification of Bright Particles

- EDS peak identification implies presence of B and C.
- WDS spectral resolution confirms:
 - EDS peak near 180 eV is NOT B-K or Mo-M but is Nb-M.
 - EDS peak near 280 eV is C-K.
- The bright particles are Nb-C.

EBSD Particle Analyses

EBSD + SI Mapping

- Matrix is indexed as Ni (FCC).
- Particles are indexed as NbC (FCC).
- Orientations are different for each particle.
- EDS and EBSD results are self-consistent.

Aerospace Sample Summary

- Brightly imaging particles (in BSE)
- Particles contain Nb and C
- Confirmed to not contain Mo and B
- Crystallographically confirmed as NbC

These may be a reason for unintended properties.

Summary

- Dual-detectors help smooth the x-ray intensity from rough sample surfaces
- EDS Spectral Imaging analyses
 - Acquisition in less than 3 minutes
 - Elemental distributions are found that are not visually apparent in electron image
 - Phase analyses provide a wealth of compound information, both spatial and chemical
- WDS analyses
 - Can be challenging on fracture surfaces
 - Provide elemental confirmation in spectra
 - Provide true elemental distribution maps
- EBSD analyses
 - Identify crystal structure
 - Map distribution of crystal phases

Conclusions

 NORAN System 7 microanalysis system provides all of the necessary tools in electron-beam instruments to fully understand the distribution of alloys, minerals, and compounds in samples for failure analysis.

Questions

Thank you for attending today's webinar.

Ask any questions using the chat function.