

ThermoFisher SCIENTIFIC

Six analytical strategies for studying glycosylation of biopharmaceuticals

Global Pharma Tour 2016

The world leader in serving science

What role do glycans play in biotherapeutics?

- 70% of protein drug candidates in clinical development are glycosylated
- Many host-pathogen interactions occur using glycans (recognition, degradation, etc)
- Glycosylation affects:
 - Biological activity
 - Pharmacokinetics
 - Stability
 - Immunogenicity
- Glycosylation is the most common PTM (post translational modification) studied in biopharmaceuticals

Characterization and Confirmation of Biological Products

- **ICH (Q6B)** recommended 6 test approaches for characterization and confirmation of biological products:
- Amino acid sequence
- Amino acid composition
- Terminal amino acid sequence
- Peptide map
- Sulfhydryl group(s) and disulfide bridges
- Carbohydrate structure

"For glycoproteins, the carbohydrate content and Structure (neutral sugars, amino sugars, and sialic acids) is determined."

Glyco-engineering to improve biopharmaceuticals

Therapeutic antibodies: Fc glycans determine function

Glycan workflows

Thermo Fisher SCIENTIFIC

Monosaccharides & Sialic Acids

Monosaccharide workflow

- Monosaccharide composition can screen for changes in glycosylation
- Allows measurement of total sugars and amounts of specific monosaccharides & sialic acids
- Workflow using HPAE-PAD (ion chromatography) Specific Carbohydrate Chromatography and Detection

HPAE-PAD Glycoprotein Monosaccharide System

Monoclonal Antibody Hydrolysate with and without Amino Trap

Monosaccharide Compositional Analysis of hIgG

Thermo Fisher SCIENTIFIC

Separation of Sialic Acids

Separation of Glycoprotein Acid Hydrolyzates

65 Column: Eluent: NaOH from acetate in 100 Temperature: Flow Rate: Inj. Volume: Detection: Samples:			CarboPac [™] CarboPac P/ 70-300 mM a 7.5-9.0 min, 0 mM NaOH 30 ° C 0.5 mL/min 10 µL PAD, Au (Dis A) b. apo-t D) s. α ₁ -ac acid hydrolys	CarboPac [™] PA20 guard, 3 x 30 mm CarboPac PA20, 3 x 150 mm 70-300 mM acetate in 100 mM NaOH from 0-7.5 min, 300 mM acetate in 100 7.5-9.0 min, 300-70 mM acetate from 9.0-9.5 min. 7 min of equilibration at 70 mM NaOH 30 ° C 0.5 mL/min 10 μ L PAD, Au (Disposable) A) b. apo-transferrin, B) h. transferrin, C) fetuin, D) s. α_1 -acid glycoprotein, E) h. α_1 -acid glycoprotein acid hydrolysis followed by lyophilization and dissolution						ate in 100 mM tion at 70 mM		
		١		Peaks:			A)	B)	C)	D)	E)	
	E)	h			1. Neu5Ac		1.7 2 1	4.4 ND		18 0 39	15 2.6	37 pmol
	D)				2		2.1	NB		0.00	2.0	NB
nC	C)				2							
	B)		1									
	A)	h r	1		2 							
35								A 1	0% si	gnal offs	et has be	een
()	3	mir	n 6		9.5		app ND	olied. = No	t Detecte	d	

Thermo Fisher

SCIENTIFIC

Labeled glycans

Labeled glycans – quantification and qualification

- Glycan specific separations:
 - Thermo Scientific[™] GlycanPac[™] AXH-1
 - Thermo Scientific[™] GlycanPac[™] AXR-1
 - Thermo Scientific[™] Accuore[™] 150-Amide-HILIC ۰
- Trace quantification using new fluorescence detector for Thermo Scientific[™] Vanguish[™] Flex UHPLC
- Qualitative released glycan structure analysis can be confirmed using HRAM MS and PREMIER Biosoft SimGlycan® software

2AB bovine fetuin glycans on Accuore150-Amide-HILIC

Traditional HILIC chromatography of Released Glycans

Peak Number	Glycan
1, 2	A3G2S2, A3G3S1, A3G3S2
3	A3G3S2, A3G2S3
4	A3G3S3, A3G3S4
5, 6	A3G3S3, A3G2S4
7	A3G3S3, A3G3S4
8	A3G3S3, A3G3S4

Separation Conditions				Part Number		
Instrumentation:	Thermo Scient RSLC HPLC sy Dionex FLD flu	Thermo Scientific™ Dionex™ UltiMate™ 3000 RSLC HPLC system equipped with a Thermo Scientific Dionex FLD fluorescence detector				
Column:	Accucore 150 100 × 2.1 mm	Accucore 150-Amide-HILIC, 2.6 μm, 16726-1 100 × 2.1 mm				
Mobile phase A:	Acetonitrile					
Mobile phase B:	50 mM ammonium formate, pH 4.4 (prepared from LS-N-BUFFX40, Ludger Ltd)					
Gradient:	Time (min)	% B	Flow rate (r	mL/min)		
	0	20	1.0			
	26	40	1.0			
	27	50	1.0			
Column temperature:	60 °C					
Backpressure:	300 bar					
Injection details:	5 µL in water,	5 μL in water, 50 μL loop				
Injection wash solvent:	on wash solvent: Acetonitrile / water (78:22 v/v)					
Excitation wavelength:	330 nm					
Emission wavelength:	420 nm					

Accuore-150-Amide-HILIC – 2.6µm superficially porous silica particles modified with polyamide

Charge-based / HILIC separation GlycanPac AXH-1

Column: GlycanPac AXH-1 (1.9 µm) Dimension: 2.1 × 150 mm Mobile Phase A: Acetonitrile Mobile Phase B: Ammonium formate (50 mM, pH = 4.4) Mobile Phase C: Water

Time (min)	% A	% B	% C	Flow (mL/min)
-5	90	10	0	0.4
0	90	10	0	0.4
6	50	20	30	0.4
12	50	20	30	0.4

Flow Rate: 0.4 mL/min Injection Volume: 40 pmole Temperature: 30 °C Detection: Fluorescence at 320/420 nm Sample: 2AB Labeled *N*-glycans from bovine fetuin

GlycanPac AXH-1 (1.9 µm)
2.1 × 150 mm
Acetonitrile (100%)
Water
Ammonium formate (100 mM, pH = 4.4)
0.4 mL/min
50 Pmoles
30 °C
Fluorescence at 320/420 nm
2AB labeled N-glycan from bovine fetuin

Time (min)	% A	% B	% C	Flow (mL/min)	Curve
-10	78	20	2	0.4	5
0	78	20	2	0.4	5
30	70	20	10	0.4	5
35	60	20	20	0.4	5
40	50	20	30	0.4	5

RP / Charged based Separation - GlycanPac AXR-1

- WAX functionality: separated glycans into different "clusters" in order of increasing charge
- RP functionality: facilitates further separation within each "cluster" to achieve high-resolution separation for glycans of the same charge according to their <u>isomerism</u> and size

GlycanPac columns and Amide HILIC column

When to use each column?

Glyco-biopharmaceuticals

EPO:

Therapeutic antibodies

2AA labeled *N*-glycans from human IgG

Column:	GlycanPac AXH-1 (1.9 µm)
Dimension:	2.1 × 150 mm
Mobile Phase A:	Acetonitrile (80%) + water (20%)
Mobile Phase B:	Ammonium formate (80 mM, pH = 4.4)
Flow Rate:	0.4 mL/min
Injection Volume:	20 Pmoles
Temperature:	30 °C
Detection:	Fluorescence at 320/420 nm
Sample:	2AA labeled N-glycan from human IgG

Time (min)	% A	% B	Flow (mL/min)	Curve
-10	99	1.0	0.4	5
0	99	1.0	0.4	5
30	87.5	12.5	0.4	5

Budde

30

Paak	Shubm	Charge of Bycan (without 24A label)	Molecular Mans (Including 2AA label)		Peak	Shackers	Charge of Diyass (without 2AA label)	Molecular Mass (including 2AA labe		
		o	1380.5178		10	0-8-0 0-8-0	O	1751.5449		
2	0-0-0-0 0-0-0-0	0	1407.5280		н		0	1907.7328		
3		o	1503.5972		a		o	2110.7022		
•	┉╦╍┛	0	1542.5706			******	а	205.7454		
	•••••	٥	1542.5706			0-8-0 0-8-0 0-8-0	а	2252.7404		
		٥	1706.6796		н		а	2006.7454		
6	••••	٥	15240.5221			*****	а	222.7404		
1	•••••••	٥	1745-0200		15	••••	а	2198,7983		
•	•=•••	٥	1745.0200		a		а	2401.0775		
	Unlecom		University							
Nac data	Ruchý Marcon Galadam Ficolý i-Jacan diazardní (Mari) (Tař) maninic (-Fari)									

USP 212 Proposed Method: 2AB-Labeled glycans by IC-FLD

SCIENTIFIC

Upstream high-throughput Glycan screening

Labeled glycans

- High throughput
- Early discovery

Thermo Scientific[™] GlycanAssure[™] Workflow

SCIENTIFIC

Glycopeptides

Glycopeptide workflow

- Important for site profiling of PTMs including glycosylation
 - A variety of fragmentation techniques can be used
 - ETD, HCD or CID
- **Robustly digest in 1 hour** using Thermo Scientific[™] SMART Digest[™] Kits
- Bioinformatics tools are extremely valuable for data interpretation and glycosite profiling
 - Thermo Scientific™ Biopharma Finder™ Software

- Unique HCDpdETD method features onthe-fly identification of glycopeptides using diagnostic fragment ions from sugar fragmentation.
- A high quality HCD spectrum is generated for each peptide.
- An additional ETD spectrum is generated for each glycopeptide.
- For each glycopeptide, ETD provides information of peptide sequence and site of glycosylation while HCD provides information of glycan structure and additional peptide sequence.

Zhiqi Hao et al 2014 ASMS TP264

Unlabeled glycans

O-linked & N-linked

Charged Aerosol Detection for Unlabeled Glycans

Ion Chromatography

- No requirement for labeling
- Near universal detection
- Quantitative response without individual standards
- Orthogonal detection to MS

Released 2015

Thermo Scientific™ Vanquish™ Charged Aerosol Detector Full integration with Thermo Scientific[™] Vanquish[™] UHPLC platform, slide-in module design, reduced flow path for optimum operation

Label-free Analysis of N-linked Glycans by UHPLC-CAD

PNGase F Digest - No Labeling Required

Label-free O-glycan Analysis by HPLC-CAD

- Problems with O-linked glycan analysis:
 - 1. Released glycans degrade by peeling reaction if not reduced
 - 2. Reduced alditols cannot be labeled for enhanced detection

Alditols produced by reductive β -elimination cannot be labeled:

Glycan Labeling is not required with UHPLC-CAD

Label-free Analysis of O-linked Glycans by HPLC-CAD

Reductive Beta Elimination - No Labeling Required

Intact Glycoprotein

Intact glycoform workflow

- **Fast analysis** of the protein in "intact" form is important for biotherapeutic development
- A legal requirement to characterize the intact form and determine heterogeneity
- Due to the variations in structure, attached glycans, charge etc, the highest resolution and most accurate mass MS is required for precise quantification.

Glycan Analysis of Rituximab

Download Application Note 21465: Fast online desalting of mAbs using a reversed phase desalting cartridge for LC-MS analysis

- A fast 4 minutes desalting method for high-throughput characterization.
- Intact Mab mass and the relative glycoform abundance within 5 minutes.
- In-depth characterization for glycoforms detection below 1% relative intensity.
- Single software for all data processing
 - Thermo Scientific[™] BioPharma Finder[™]

Summary – Six Glycan workflows

Thank you

