
Principles of Exact Call Chemistry
Introduction
The 5500 Series SOLiD™ System is designed to provide industry-
leading accuracy through a unique, ligation-based sequencing 
methodology, Exact Call Chemistry (ECC). This distinct sequencing 
approach builds on SOLiD™ 4 System chemistry, employing 
sequential ligation of oligonucleotide probes labeled with one of 
four fluorescent dyes, whereby each probe assays multiple base 
positions at a time. While SOLiD™ 4 System chemistry interrogates 
every base of the DNA template twice using two-base encoded 
probes, Exact Call Chemistry performs an additional inspection of 
the template using a new, three-base encoded probe set. This new 
probe set is carefully designed to complement two-base encoding 
and jointly form a redundant error-correction code. The set of all 
dye color measurements, each carrying information about multiple 
bases, is then used by a specialized decoding algorithm to establish 
the correct base sequence without knowledge of the reference, 
even in the presence of measurement errors. This strategy allows 
for error detection and correction, providing highly accurate results 
for resequencing, de novo sequencing, and rare variant detection.

Encoding of base sequences with Exact Call Chemistry
5500 Series SOLiD™ System Exact Call Chemistry is illustrated in 
Figure 1. Beads containing single-stranded copies of DNA library 
fragments are attached to the surface of the FlowChip. These 
sequences are interrogated by fluorescently labeled probes that 
hybridize and ligate at the boundary of single-stranded and double-
stranded DNA. The sequencing process is organized into phases 
called primer rounds. Each primer round consists of hybridization 
of a sequencing primer with a specific offset, followed by multiple 
cycles of probe ligation and detection. The primer round is concluded 
by a reset that melts the primer and extended sequence off the 
template, preparing the template for the next round. SOLiD™ 4 System 
chemistry relies on performing five primer rounds using a two-base 
encoded probe set. In addition, ECC follows these five primer rounds 
with one additional round. This sixth round starts with the same 
sequencing primer as the fifth round, but uses a new, independent 
probe set with a specific three-base labeling. Together, the six primer 
rounds enable unrivaled system accuracy by forming a redundant 
error-correction code. The labeling of both probe sets, shown in 
Figure 1, is inspired by a convolutional code, a type of error-correction 
code used in digital communication systems where the encoded 
symbols are derived from a short subset of consecutive information 
symbols [1]. The algebraic formula used to generate them is 
described in Appendix C.
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Figure 1. Ligation-based sequencing with 5500 Series SOLiD™ System Exact Call Chemistry.



Demonstration of increased accuracy with Exact Call Chemistry
To validate this sequencing strategy, we performed SOLiD™ System 
sequencing using Exact Call Chemistry on templated beads 
containing synthetic DNA templates. The color measurements were 
collected by the instrument and processed with the ECC base calling 
algorithms (described in detail in Appendices A and B). Because the 
precise sequence of the DNA template was known, this approach 
specifically allowed for direct assessment of the sequencing accuracy 
of Exact Call Chemistry, presented in Figure 2 as a histogram of 
calibrated Phred scores.

As the results demonstrate, Exact Call Chemistry determines the 
template sequence with extremely high accuracy, the majority 
of base calls achieving accuracy in excess of 99.9999%. Since 
each base position is interrogated by multiple colors, consistent 
agreements between multiple color calls significantly increase the 
confidence in base calls. At the same time, some color errors can 
be corrected as a result of the single-read redundancy provided by 
the sixth primer round.
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Accuracy of base calls in Phred scale
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Figure 2. Histogram of base call accuracies expressed in calibrated Phred scale. Base calls were derived from color 
measurement through algorithms described in Appendices B and C.

Conclusion
Sequencing with Exact Call Chemistry and the 5500 Series SOLiD™ System clearly demonstrates increased performance and accuracy, which 
is imperative to high-throughput detection of rare genetic variants in heterogeneous or pooled samples, as well as de novo sequencing. The 
multibase encoding functionality contributes to lower error rate and reduced systematic noise, resulting in unsurpassed sequencing accuracy 
even at low coverage.

Bioinformatics of Exact Call Chemistry

Appendix A: Determination of base calls and quality values

Symbol Definition

u = [u0, u1, u2, …, uK] Sequence of bases in a DNA fragment. Base u0 is the last base of the adapter ligated to the 5’ end of the fragment, which is 
known ahead of time.

xA = [xA,1, xA,2, …, xA,K] Expected sequence of colors resulting from interrogating u using probe set 1, assuming no color errors.

xB = [xB,1, xB,2, …, xB,K/5] Expected sequence of colors resulting from interrogating u using probe set 2, assuming no color errors.

yA = [yA,1, yA,2, …, yA,K] Noisy color measurements of xA.

yB = [yB,1, yB,2, …, yB,K/5] Noisy color measurements of xB.

Table 1. Mathematical notation for ligation-based sequencing. Symbols and corresponding definitions are indicated.



The 5500 Series SOLiD™ System sequencing process can be under-
stood as a transformation of the template base sequence u into a 
collection of color measurements (see Table 1 for notation). If the 
colors always could be read out without errors, this conversion would 
be a deterministic, injective function u → (xA,xB), where every possible 
base sequence translates to a unique color sequence. For example, 
a sequence u = [TCGTGTGCTTCCGAAG] (last base T of the adapter 
followed by 15 template bases) is expected to translate into the set of 
colors in Figure 3. 

In the example shown in Figure 3, 15 unknown template bases 
(excluding u0) have been converted into 18 color reads. In general, 
there are 418 (~64 billion) possible color sequences of length 18, but 
only 415 (~1 billion) possible base sequences of length 15. This means 
that only one in every 64 possible color sequences corresponds to a 
base sequence. Such “valid” color sequences are rare and, due to the 
design of the probe sets, dissimilar from each other. This makes them 
easy to distinguish, even in the presence of some measurement noise 
and errors in color calls.

The optics, imaging, and image processing subsystems of the 5500 
Series SOLiD™ System produce color measurements for each DNA 
fragment and each probe ligation cycle. Measurements for a specific 
bead (yA and yB, see Table 1) carry information about the color 
sequence xA, xB, and indirectly about base sequence u. The unknown 
sequence u, hidden variables xA and xB, and observed variables yA and 
yB are linked together through a causal, statistical relation that is key 
to base calling (illustrated by a Bayesian network in Figure 4). 

The 5500 Series SOLiD™ Sequencer performs three steps to 
determine individual bases and assign quality values to the calls, 
as illustrated in Figure 5. At the core of this process is the Bayesian 
inference operation that derives four conditional (posterior) probabili-
ties, P(ui = A,C,G,T|yA,yB), for each base position i. The general formula 
for such derivation is a marginalization of P(u|yA,yB) derived through 
the Bayes theorem from conditional probability P(yA,yB|u):

A.

B.

Figure 3. Example of color encoding for base sequence u = [TCGTGTGCTTCCGAAG]. Colors are arranged by (A) order of data acquisition; (B) base 
position and probe set.
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Figure 4. Bayesian network linking the unknown bases and the observed color 
measurements.



A practical way to efficiently perform the above computation is to use 
dynamic programming. The 5500 Series SOLiD™ System uses a type 
of dynamic programming called the forward-backward algorithm [1], 
which is detailed in Appendix B. 

The steps preceding and following the Bayesian inference are much 
simpler. The measurement model, evaluated before Bayesian 
inference, converts each color measurement yi into four individual 
color likelihoods P(yi|xi = •,•,•,•), which are later used within the 
forward-backward algorithm to calculate P(yA,yB|u). Distributions 
P(yi|xi) are well characterized within the 5500 Series SOLiD™ 
Sequencer image processing system. Finally, the product of Bayesian 
inference, probabilities P(ui= A,C,G,T|yA,yB), are converted to base calls 
ai through straightforward probability maximization: 

Once the base call is established, its quality value bi is directly derived 
from the base probability as:

Figure 5.  Base calling process performed by the 5500 Series SOLiD™ System for 
Exact Call Chemistry.
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The quality values are determined from a lookup table using the four 
base likelihoods as feature vectors.

A.

B.

Figure 6. Graphical representation of one base sequence u = [u0,u1,u2,…,uK] as a path through a graph. (A) Notation for variables associated with nodes and edges.
(B) Example for base sequence u = [TCGTGTGCTTCCGAAG].
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Appendix B: The forward-backward algorithm

The forward-backward algorithm [1] solves the Bayesian 
inference problem of computing all conditional probabilities 
P(ui = A,C,G,T|yA,yB) of bases from measurements, which is the 
basis for performing base calls and calculating base quality 
values for each base call. 

The forward-backward algorithm represents any possible sequence 
of bases u = [u0,u1,u2,…,uK] with a path through a graph that starts with 
node [u0,u1,u2] and passes through nodes [u1,u2,u3], [u2,u3,u4], and so 
on, to node [uK-2,uK-1,uK]. Figure 6B shows a path corresponding to a 
sequence from the example in Figure 3. Every edge connecting a pair 
of nodes [ui,ui+1,ui+2] and [ui+1,ui+2,ui+3] carries information about four 

bases [ui,ui+1,ui+2,ui+3], which is enough to uniquely associate it with the 
expected color of the probes interrogating bases [ui,ui+1,ui+2,ui+3,ui+4] 
from either probe set 1 (xA,i+1) or probe set 2 (xB,(i+3)/5) according to 
Figure 1. The graphical notation for values associated with nodes and 
edges is shown in Figure 6A.

The set of paths corresponding to all 4K possible K-base sequences 
can be combined into a single compact graph called a trellis (Figure 
7). The trellis guarantees one-to-one correspondence between 
any path from the left most nodes to the right most nodes and all 
possible base sequences, which makes it a blueprint for dynamic 
programming computations.
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Figure 7. General structure of the trellis. [A] The trellis is divided into K stages, each consisting of 256 edges connecting two groups of 64 nodes. Each group of 64 nodes 
corresponds to all possible base triplets. At the beginning and end of each section there are 64 nodes, corresponding to all possible base triplets. Each edge corresponds 
to some quadruplet of bases [ui, ui+1, ui+2, ui+3], connecting node [ui, ui+1, ui+2] to node [ui, ui+1, ui+2, ui+3]. [B] An example subset of nodes and edges. An edge that corresponds to a 
quadruplet of bases [ui, ui+1, ui+2, ui+3], has an expected color xA,i+1 in probe set 1 and an expected color xB,(i+3)/5 in probe set 2 determined from Figure 1. Note that measurements 
for probe set 2 are only available in every fifth trellis section.

A.

B.

The algorithm determines base calls and quality values by 
performing the following steps:
Step 1.
For each edge in the trellis, establish edge metric γ(ui,ui+1,ui+2,ui+3). 
For each edge in the graph associated with bases ui,ui+1,ui+2,ui+3 and 
colors xA,i+1, xB,(i+3)/5, determine the edge weight: 

In the above formula, P(yA,i+1|xA,i+1 = •,•,•,•) and P(yB,(i+3)/5|xB,(i+3)/5 = 

•,•,•,•) are color likelihoods derived from color measurements yA,i+1 
and yB,(i+3)/5. P(ui+1) is always assumed to be 0.25. Note that for any base 
sequence, the product of all edge weights along the corresponding 
path results in P(yA|xA) × P(yB|xB) × P(u) = P(yA,yB,u), is proportional 
to the conditional sequence probability P(u|yA,yB). The goal of the 
forward-backward algorithm is the efficient marginalization of 
P(u|yA,yB) to obtain P(ui|yA,yB) for individual base positions.

 
 
Step 2.
Calculate forward node metric α(ui,ui+1,ui+2) for every node in the graph:

2A. Initialize α(u0,u1,u2) to 1 for nodes where u0 agrees with last base of 
the primer and 0 otherwise.

2B. Iteratively compute all node metrics α(ui+1,ui+2,ui+3) from node 
metrics α(ui,ui+1,ui+2) according to the formula:

Notice that summands in the above formula correspond to four edges 
arriving at the node [ui+1,ui+2,ui+3] from the left.

 
Page 6, equation in Step 1:  
 
 
 

                                                                       
 
 
 
Page 7, equation in Step 5: 
 
 

              
                                 
                                  

 

 
 

                
2��|�� ��� � � 	 � � 	 � 2�� ��|
� · 2
�

2�� ���������������
 

               �� �  x  x x����� � � �� 2��|�� ��� 
 
 
              
 
 �� � � g gg �� 2�� � ��|�� ��� 
 
 
              
 
 

��� ���� ���� ����� � 2!"� ���#$� ���% · 2!"� ����/&#$� ����/&% · 2����� 
 
 
              
 
 

'���� ���� ����� � � '�� ���� ����� · ��� ���� ���� �����
��(� � � �

 

 
 
 
 
 
 
 
 
 
 
 
 
 



Step 3.
Calculate backward node metric β(ui,ui+1,ui+2) for every node in 
the graph:

3A. Initialize β(uK,uK+1,uK+2) to 1 for all nodes.

3B. Iteratively compute all node metrics β(ui,ui+1,ui+2) from node 
metrics β(ui+1,ui+2,ui+3) according to the formula:

Notice that summands in the above formula correspond to four edges 
arriving at the node [ui,ui+1,ui+2] from the right.

Step 4.
Calculate partially marginalized probabilities P(yA,yB,ui,ui+1,ui+2) for all 
base triplets as:

Each value is associated with one node in the graph.

Step 5.
Calculate the posterior base probabilities P(ui = A,C,G,T|yA,yB) from 
partially marginalized probabilities from step 4.

All the steps of the decoding process have low complexity and are well 
suited for high-performance implementation. 
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Appendix C: Probe set design
The design of the labeling for the two probe sets is inspired by a 
convolutional code, a type of error-correcting code used in digital 
communication systems [1]. Convolutional codes have two key 
properties. First, they have a sliding window property, where the 
encoded symbols are derived from a short subset of consecutive 
information symbols—a property that is naturally satisfied by SOLiD™ 
System chemistry. Second, convolutional codes are linear in a finite 
field; therefore, encoded symbols, when treated as elements from 
a finite field, can be computed as weighted sums of input symbols. 
This second property can be directly applied to probe set design. 

Each probe consists of five nucleotides v = [v1,v2,v3,v4,v5] that 
specifically hybridize to complementary DNA sequence, three 
inosines that hybridize to any sequence, and a fluorescent dye c. 
With four possible nucleotides (A, C, G, and T), 1,024 possible probe 
sequences exist, each having one of four unique dyes assigned to 
it. Linearity of the probe set means that each of the 1,024 probes is 
assigned a dye according to the formula

c = v1 × g1 + v2 × g2 + v3 × g3 + v4 × g4 + v5 × g5,

where g = [g1,g2,g3,g4,g5] is a vector of weights that defines the probe 
sets. Bases vi, dye c, and weights gi are considered to be elements of 
a finite (Galois) field of size 4, denoted GF(4) [2]. The correspondence 
between nucleotides vi, dyes c and elements of GF(4) are presented 
in Figure 8A. Figures 8B and 8C further detail the mechanics of 
performing multiplication and addition of elements of GF(4). Probe 
sets presented in Figure 1 for Exact Call Chemistry have been 
generated by formula (1) by assigning weights g = [1,1,0,0,0] to Probe 
Set 1 and weights g = [1,3,0,3,0] to Probe Set 2.

A)  Math in finite field GF(4)

A B A + B A × B

3
2
1
0

3
2
1
0

3
2
1
0

3
2
1
0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0
3
2
1
0

2
3
0
1

1
0
3
2

0
1
2
3

0
0
0
0

3
2
1
0

1
3
2
0

2
1
3
0

3210

B)  GF(4) assignment to bases

Template Base

Probe Base

GF(4) assignment
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C)  GF(4) assignment Dyes

Dye Label

Color Notation

GF(4) assignment

Figure 8. Finite field GF(4). [A] addition and multiplication in GF(4); [B] association 
between elements of GF(4) and nucleotides; [C] association between elements of 
GF(4) and dyes.
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