Introduction

We have developed a novel and simple ligation-based method (commercialized as the
SOLiD™ Small RNA Expression Kit, or SREK) to capture and amplify small
noncoding RNAs for sequencing using the SOLiD™ Sequencing System to generate
25-35 base sequence tags. The sensitivity and precision provided by the analysis of
these sequences promises to change and improve our understanding of the complexity
of miRNAs structure and function.

Table 1: A human small RNA tissue atlas. A summary of the number of tags and distribution
of reads obtained from ten distinct human tissue samples obtained with the equivalent of 1.5 instrument
runs. The csfasta files from the SOLiD Sequencing System were mapped using the RNA2MAP tool
(www.solidsoftwaretools.com) for small RNAs and the number of tags that map to known miRNAs,
tRNAs/rRNAs/repetitive elements or to the genome are indicated. The relative proportion of reads that
map to known miRNAs differ significantly between tissues, ranging from ~20-63% of the mappable data.
This may reflect the level of miRNA regulation or complexity required in these tissue types.
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Figure 1: Method for library construction using the SOLIiD™
Small RNA Expression Kit (SREK): FlashPAGE™ Fractionator
purified small RNAs (~18-40 nt, 100 ng) from ten human tissues were
combined with a mixture of specific 5’ and 3’ adaptors and ligated in a
single step. The ligated templates are converted to cDNA, digested with
RNase H and then amplified by PCR. Different tissue samples were
amplified with PCR primers containing a unique 6 nt barcode (bc) between
the 3’ internal adaptor (1A) and P2. Amplified products were then purified,
quantitated and equal amounts pooled, subjected to emulsion PCR and
sequenced using standard SOLiD sequencing chemistry.
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Figure 2: Reproducibiliti arid’correlation with gqPCR suggest SREK and SOLID are
valid approaches for profiling miRNAs. A) Two independent placenta library preps
using either total RNA or FlashPAGE™ purified small RNA were constructed and
sequenced independently on two different instruments and tag counts of 380 known miRNAs
were compared. The data demonstrate that both the library and instrument performance are
highly reproducible. B) Quantitative fold-chance comparison between SOLiD and gPCR
were compared using Brain and Heart datasets. A correlation value of 0.94 suggest strong
concordance between the two methods.
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Figure 4: Expression of mIRNA variants or iIsomirs are widespread
and highlight the diversity of small RNAs and their potential
targets. The expression profile of the canonical (blue) and all isomirs
originating from the miR-214 precursor miRNA (red) found in testes. In
general, 3" isomirs are more common and diverse. However the sequence
differences seen with some 5’ isomirs significantly change the seed region of
the miRNA, known to significantly contribute to mRNA target recognition.
This suggests that isomirs generated from the same precursor miRNA may
have different mMRNA targets thus expanding the range and complexity of
miRNA function. Also, this example shows the canonical miRNA for miR-
214 is not detected in this tissue and the most prevalent miRNAs are from
the so-called ‘star’ form. The role this diversity plays in gene regulation is
not understood at this time.
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using custom TaqMan miRNA assays
Figure 5: An SVM algorithm to search for novel miRNAs and
validation using custom TagMan® assays. A) General overview of the
SVM approach. B) Forty custom TagMan® miRNA assays were designed
and tested against eight tissue samples and 33 novel RNAs were validated.

Their normalized expression levels were clustered; red = high,
black=medium & green = low expression levels.

Conclusions:
= Novel and simple library construction.
= Barcoding allows multiplexing and lowers cost per sample.
= Libraries are highly reproducible.
= Sequencing data is validated byTagman.
= Isomir diversity is high and can impact biological function.
= Many potential novel small RNAs to discover.
Trademarks of Life Technologies Corporation and its affiliates include: Applied Biosystems®, AB (Design) ®,
flashPAGE™ and SOLiD™.
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