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Introduction – Copy Number Variation
Copy number variations (CNVs) have been widely observed in mammalian germline DNA and in tumor genomes, and 

CNVs are increasingly implicated in common disease (for example,

 

mental retardation and schizophrenia) and in 
cancer progression. In humans, more total nucleotides exhibit variation due to alterations in copy number than due 
to single nucleotide diversity. Conrad et. al. recently report the discovery of 11,700 CNVs in humans of which 2000 
to 4000 are polymorphic in human populations, and estimate that they can genotype up to 40% of polymorphic 
CNVs in humans with array technologies.

Massively parallel sequencing allows powerful, hypothesis-free genome-wide interrogation of CNVs. In contrast to array 
methods, with sequencing, genomic coverage data is available at single base resolution. We use the SOLiDTM

 

System to sequence human samples, including NA18507, HuRef, and a matched tumor/normal sample. The SOLiD 
System offers massively parallel ligation-based next-generation sequencing, with a throughput of 60Mbases per run. 
The data was analyzed with v3plus CNV algorithms, some within BioScope.

CNV Detection with the SOLiD System: Overview
To detect copy number variation using massively parallel sequencing data, the following steps are performed.
1.

 

Mapping –

 

each read is mapped to the genome, and in the case of mate-pair experiments, the reads are paired, 
allowing interrogation of repetitive regions of the genome. Reads are mapped using the mapreads program  in the 
BioScope framework.

2.

 

Unique Mapping –

 

those reads that map uniquely, and so can be confidently placed, are identified.
3.

 

Normalization –

 

non-overlapping windows of variable size are identified. Specification of the extent of the window 
differs for single sample and paired sample CNV detection; details below. Normalization is typically easier when 
comparing two samples to each other than when detecting CNVs in a single sample relative to the expected copy 
number based on the reference sequence.

4.

 

Segmentation –

 

a Hidden Markov Model (HMM) is used for segmentation, that is, identification of a contiguous set 
of windows having the same number of copies.

5.

 

Copy number calling and p-value prediction –

 

the HMM is used to predict the integer value of the copy number

 

of 
each segment, and to predict the statistical significance.

6.

 

Filtering –

 

CNVs failing filtering criteria, such as an insufficient number

 

of contiguous windows, are removed.

CNV Algorithm: Single Sample
We developed a single-sample CNV algorithm as follows. For normalization, we calculate

 

coverage in variable-sized 
genomic windows that are selected to contain a constant number of mappable positions. (Using windows smoothes 
stochastic sampling noise but limits resolution.) For the human genome, we predict mappability for various run types 
(fragment or mate pair) and read length, predicting for each genome position whether it is likely to be capable of 
having reads uniquely map there or not, based on the degree of homology or repetitiveness elsewhere in the 
genome. Within these windows, we normalize coverage based on predicted mappability and GC content of this 
region of the genome; this is analogous to the array-CGH approach of normalizing based on intensity ratio using a 
matched sample. We then use a hidden markov

 

model (HMM) for segmentation, and we apply empirically derived 
filters to the contiguous segments to call copy number variants.

Post-Processing
Merge adjacent windows with similar Copy Number.  Require:

Minimum number of adjacent windows
Minumum

 

Mappability of window
Maximum P-value
Exclude 1 MB region around centromere

 

and telomere

Figure 3.  Segmentation

Figure 2.  Mappability Normalization corrects for under-coverage of repetitive and homolgous genomic regions

Figure 5. Large structural mutations are strongly correlated with tumor-specific changes in gene expression.

CONCLUSIONS
CNVs can be accurately detected using the SOLID System of next-generation sequencing. We demonstrated 89% concordance with 
the Toronto database for single-sample CNVs larger than10kb, but we have also shown high concordance with CNVs larger than 2kb, 
suggesting a very high true positive rate. In addition we show good correlation with orthogonal data sets.

In contrast to detection of CNVs with array technology, CNV detection with sequencing can detect copy number increases at least as 
accurately as copy number decreases.

Paired-sample CNV detection has an extremely low false discovery rate. Detection of CNVs in tumor genomes is strongly positively 
correlated with changes in gene expression, suggesting a causative mechanism for transcriptional alterations in tumorgenesis

 

and/or 
growth.

Segmentation: Hidden Markov Model

Observations = log ratio (observed coverage/expected)
State = Copy Number = [0 : k-1]
Initial State probabilities = [0.1/k   0.1/k    0.9   0.1/k    0.1/k    0.1/k

 

0.1/k

 

]
Initial Transition probabilities t = (1 –

 

e - d*0.1)       d ≈

 

distance between windows
Emission probabilities : state, variance of coverage

The Expectation Step: Compute the forward and backward probabilities
The Maximization Step: Re-estimate the model parameters using the Baum-Welch algorithm
Find the most probable sequence of states using the Forward-Backward algorithm
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CNV Algorithm: Paired Sample 
Normalization: In the case of paired-sample normalization, rather than comparing to the predicted mappabilty

 

of the genome, 
the coverage of the test sample is normalized by comparing to the coverage of the control sample. Systematic issues of 
mappability, GC content, etc. are expected to be similar between

 

both samples, simplifying normalization; this method is 
applicable to any species. The window size is variable, determined by fixing the number of positions of the control sample with 
coverage.  To adjust for coverage differences in the samples, coverage of each window is first normalized by mean coverage 
of that sample. Both samples must be sequenced under the same conditions (e.g. both mate pair, both the same tag length). 

RESULTS
Control: Using the same sample to normalize itself, no CNVs were observed (no false positives) when 3 consecutive 
windows were required to call a CNV, and 4 CNVs were observed when 2 consecutive windows were required, suggesting a 
very low false positives rate for paired-sample CNV detection.

Tumor/Normal: We sequenced an oral squamous

 

cell carcinoma (OSCC) and a matched normal sample to 0.8x coverage 
with the SOLiD System. We also sequenced the whole transcriptome

 

of the tumor and normal samples using a new total RNA 
based protocol, and examined the correlation between copy number

 

variation and changes in gene expression. We observed 
a significantly positive correlation between CNV and gene expression. These results suggest that gene duplication and 
deletion are key mechanisms driving the transcriptional profile changes of these tumor samples.  The identified CNV 
segments offer insight into genes associated with the initiation

 

or progression of cancer.
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Table 1.  CNV Concordance with orthogonal data
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et at, 2008

NA18507  1*35  at 4x # CNVs SOLiD with 
McCarroll

McCarroll

 

with 
SOLiD

SOLiD with 
Toronto DB

Min CNV size 10kb

 

Window size 5kb   Min Mappability 10% 142 0.43 61/142 0.352 63/179 0.887 126/142

Min CNV size 5kb

 

Window size 5kb   Min Mappability 0% 283 0.332   94/283 0.553 99/179 0.827  234/283

Min CNV size 4kb

 

Window size 2kb   Min Mappability 10% 326 0.331  108/326 0.620 111/179 0.804 262/326

Min CNV size 2kb

 

Window size 2kb    Min Mappability 0% 635 0.201 128/635 0.721 129/179 0.718 456/635
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The most strongly amplified region, with 9-fold more copies in the tumor than normal is chr11:68,503,204-69,987,273. This region 
contains several differentially expressed (red and blue tracks) genes of interest: cyclin

 

D1 (CCND1), oral cancer overexpressed

 

1 
(ORAOV1), protein tyrosine phosphatase

 

receptor (PPFIA1), cortactin

 

(CTTN), and SH3 and multiple ankyrin

 

repeat domains 2 
(SHANK2).  
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This region (chr9:21,973,361-22,061,522), which shows evidence of having a single copy deletion in the tumor, contains two 
genes of interest: cyclin-dependent kinase

 

inhibitor 2B (CDKN2B) and cyclin-dependent kinase

 

inhibitor 2A (CDKN2A). 

Normalization
Sample variable size windows (1kb –

 

5kb mappable positions)

For each window Wi, calculate local score Si 
Si = 

log2 (observedi

 

/ expectedi

 

)
Observed = Actual coverage (e.g. 
average 9X on window bases)
Expected = Global coverage
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Figure 1. Normalization for GC-content

A) A strong correlation (R = 0.73) is observed between changes in copy number and changes in gene

 

expression for patient 8. B) The correlation is stronger (R = 
0.84) if only meaningful copy number changes (i.e., those greater than 1.4-fold) are considered. 

A. B.

Fig 4: Examples of genomic regions that show strong correlations 
between CNVs and changes of gene expression.

HuRef  2*50 at 30x coverage # CNVs SOLiD with Toronto DB
Min CNV size 10kb

 

Window size 5kb   Min Mappability 10% 367 0.807 296/367

HuRef  2*50 at 8x coverage

Min CNV size 10kb

 

Window size 5kb   Min Mappability 10% 404 0.767 310/404
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