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Paired End Sequencing on the SOLiD™ Platform1

ABTSRACT
The SOLiD™ platform is a revolutionary sequencing system that utilizes sequential ligation of fluorescently labeled 
oligonucleotide probes, enabling high fidelity and ultra-high throughput sequencing.  Previous sequencing protocols for 
the SOLiD™ system have only been available in the forward direction (3’ to 5’).  Sequencing in the reverse direction 
(5’ to 3’) is ideal as it enables fragment library paired end sequencing.  To this end, novel ligation chemistries were 
developed to support 5’ to 3’ read lengths of up to 35 bases.  This paired end sequencing technology will be 
incorporated into the SOLiD V4 platform, increasing effective read length, maximizing throughput per run, and meeting 
special research interests, such as whole transcriptome studies. 

SOLiD™ Overview
SOLiD™ Sequencing involves the serial ligation of probes in which a dye reports the subset of four possible dibase pairs 
at the 1st and 2nd positions from the ligation junction. SOLiD™ Sequencing in the forward direction involves:  
A.) 5’-phosphorylated primer is hybridized to the adapter region of the templates to be sequenced;  B.) Fluorophore 
labeled 8-mer complementary probes, containing 3 universal bases to decrease complexity, are ligated to the primer; a 
second round of ligation is performed with unlabeled probe to increase the amount of primer extended per bead; C.) Any 
remaining unextended primer is capped by dephosphorylation to prevent dephasing; beads are then imaged to record 
fluorophore reporter;  D.) A phosphorothiolate bond in the ligated probes is cleaved with AgNO3, reducing the probe to 
5 nucleotides and generating a free phosphate for the next round of ligation;  E.) Additional cycles of ligation, capping, 
imaging, and cleavage are performed until the desired read length is obtained.

SOLiD™ Sequencing in the reverse direction involves:  F.) 3’-hydroxylated primer is hybridized to the adapter region of 
the templates to be sequenced;  G.) Fluorophore labeled 8-mer complementary probes (5’ phosphorylated), containing 
3 universal bases to decrease complexity, are ligated to the primer; a second round of ligation is performed with 
unlabeled probe to increase the amount of primer extended per bead; H.) Any remaining unextended primer is capped 
by polymerase incorporation of a ddNTP to prevent dephasing; beads are then imaged to record fluorophore reporter;  
I.) A phosphorothiolate bond in the ligated probes is cleaved with AgNO3, reducing the probe to 5 nucleotides and 
generating a free 3’ phosphate;  J.) The 3’ phosphate is removed for the next round of ligation;  K.) Additional cycles of 
ligation, capping, imaging, cleavage, and dephosphorylation are performed until the desired read length is obtained. 
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Schematic of Paired End SOLiD™ Sequencing

Figure 1. Paired end sequencing on the SOLiD™ platform. Priming from the 5’ end of the template for forward reads (F3 Adapter) and from 
the 3’ end for the reverse reads (F5 adapter) of a standard fragment library.  Novel reverse ligation chemistry enables paired end sequencing 
without requiring synthesis of the complementary strand of the DNA template.
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Reverse Sequencing E coli DH10b “Satay” Plots

Figure 2. “Satay” Plots for an E. coli DH10b 
35 base reverse sequencing run.  These plots 
show the spectral quality and intensity of the 
sample.  The axes correspond to the 4 different 
fluorochromes used in SOLiD™ sequencing: 
FAM, CY3, TXR, CY5.  Each dot on the plot 
represents the fluorescent wavelength and 
intensity of multiple copies of the bead bound 
DNA template.  Beads that fall on or near an axis 
are monoclonal (i.e. they contain multiple copies 
of a single DNA template), and beads that are far 
from the origin are high intensity beads. 

Figure 3. Matching Statistics for paired end 
sequencing of an E. coli DH10b genome. For 
reverse sequencing (F5), 65% of the reads 
matched the genome for 35 bases allowing up 
to 4 mismatches; 77% of the reads matched the 
genome for 25 bases allowing up to 3 mismatches.  
For forward sequencing (F3) 76% of the reads 
matched the genome for 50 bases allowing up 
to 6 mismatches.  

Matching Statistics for Paired End Sequencing

Paired End Sequencing Throughput

Figure 4. Estimated throughput of paired end 
sequencing based on SOLiD™ 4 bead densities.  
A full sequencing run can generate 28 Gigabases 
of data for 25mers (reverse reads), 35 Gigabases 
of data for 35mers (reverse reads), and 57 
Gigabases of data for 50mers (forward reads). 
A 25mer (reverse) x 50mer (forward) can generate 
up to 86 Gigabases of data, and up to 120 Gigabases 
for 35mer (reverse) x 50mer (forward).     

DNA Template Size Distribution

Figure 5. Size distribution of DNA template determined from paired reads.

Paired End Sequencing of the Human Genome

 Reverse Sequencing Human “Satay” Plots

Figure 6. “Satay” Plots for a 25 base reverse sequencing run of a human genome.  

Distribution of Small Insertions Distribution of Small Deletions

Human Genome Distribution of Coverage Average Coverage per Chromosome

Figure 7. Distribution of coverage of uniquely placed paired reads 
across the human genome.  The average coverage was 14.5x. 

Summary of SNPs/Indels

Table 1. Pairing rates for 25mer (reverse 
read) x 50mer (forward read) and 35mer 
(reverse read) x 50mer (forward read).

Table 2. Summary of identified
SNPs and small indels, and their
concordance with dbSNP.

* stringent indel calling conditions
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E coli DH10b Pairing Rates
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 DNA extracted from buccal swab

 Constructed paired end library 
 using 1 µg of DNA
   1 day library protocol

 2 SOLiD Sequencing Runs
   50 bp Forward Reads
   25 bp Reverse Reads

 Generated over 88 Gigabases of
    aligned reads
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Count % in dbSNP
Total SNPS 2972853 82.16%
Heterozygous SNPs 1963475 73.70%
Homozygous SNPs 1213219 94.42%
Small Indels * 103027 73.80%

Figure 9. Distribution of small insertions (1-3 bases); 76.9%
were in dbSNP.  

Figure 10. Distribution of small deletions (1-11 bp); 71.2% 
were in dbSNP.  

Figure 8. Average coverage for each chromosome. Coverage 
ranged from 14.7x to 17.4x for the autosomal chromosomes.
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