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Figure 2.  PCA on samples with standard gene-wise normalization

ABSTRACT 

In this study we have performed RNA-Seq using the SOLiDTM 3 system on samples from 

five children with acute lymphoblastic leukemia (ALL) with paired samples taken at the time of 

initial presentation with cancer (“initial” or “I”) and at the time of relapse (“relapse” or “R”).  

Raw data was processed using the analysis pipelines in Bioscope and tertiary analysis was 

performed using several published statistical methods. These methods identified gene sets 

that can select cancer relapse samples with almost 98% accuracy, and have further identified 

genes that were found to be correlated with tumor relapse and poor prognosis in other 

studies. The analysis have also identified nucleotide variants unique to the samples at the 

time of relapse. We further note that processing of the data using a Bayesian method such as 

Bayseq appears to alleviate sample and run specific variation in the data. RNA-Seq is a 

powerful tool for exploring the biology of cancer, and these results point the way to important 

follow up studies that may further elucidate the causes of cancer relapse.

INTRODUCTION

Although the rate of cure for ALL has been improving, a substantial minority of those 

afflicted with the disease still have poor outcome. Up to one quarter of children with ALL fail

therapy and relapse. The biologic determinants of disease relapse are poorly understood. 

Previous studies have identified structural genetic alterations acquired at the time relapse, 

and differences in gene expression patterns between matched samples obtained at the initial 

cancer and relapse conditions. However, a genome-wide analysis of sequence variation in 

relapsed ALL has not been performed. Moreover, next-generation sequencing approaches 

offer the opportunity to profile changes in gene expression patterns in great detail.

In this study we have performed RNA-Seq on samples from five children with ALL, with 

paired samples taken at the time of initial cancer presentation and at the time of cancer 

relapse.  40 barcode samples (4 technical replicates per sample) were sequenced on four 

SOLiD system runs.  Samples were analyzed using several statistical methods including 

principle component analysis (PCA), significance analysis of microarrays (SAM), weighted-

voting (WV), BaySeq, and Support Vector Machines (SVM).  These methods produce 

statistically significant gene sets that identify relapse samples with almost 98% accuracy, and 

have further identified genes that were found to be correlated with tumor invasiveness and 

poor prognosis in other studies.  Further analysis of SNP results have also identified 

sequence alterations unique to the relapse  state in some individuals, providing a pool of 

variations which may include potential drivers of metastasis.  

MATERIALS AND METHODS

CONCLUSIONS 
•RNA-seq on the SOLiD system is a powerful tool for exploring gene expression and for uncovering polymorphisms in whole 

transciptomes.  

•Bayesian systems such as BaySeq are able to normalize for potential run-time or instrument bias to select gene panels which 

yield excellent sample separation.  

•Combined analysis with multiple techniques is successful at selecting gene panels that help us to better understand cancer and 

leukemia.  

•SNP analysis in WT samples detects polymorphisms unique to the relapse state, suggesting that cancers refractive to treatment

may develop common polymorphisms that potentially cause malignancy.
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Figure 4.  BaySeq uses raw read counts to separate relapse and initial samples.  

Bayseq alone does a good job at identifying differentially expressed genes.
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Figure 3. Relapse classifier genes can be selected with a variety of methods.

51 genes at 95% significance

Top 100 genes
142 genes (FP rate=0)

36 genes with high prediction accuracy

PCA on raw read counts using only the significant 

genes identified by BaySeq.  Because Bayseq 

considers instrument groupings and technical replicates 

when calculating significant genes, BaySeq provides 

good classifier genes which separate relapse and initial 

samples well.  Here, variation across PC2 separates the 

sample sets.  The same result is shown on the right in 

three principle components. Blue: relapse; Red: initial

Figure 5.  142 classifier genes identified by SAM are 

differentially expressed in the initial and relapse states

Initial Cancer Relapse Initial Relapse

Expressed in Initial Cancer Expressed at Relapse

Expression in Initial samples (left) and Relapse samples (right) of classifier genes identifed by SAM analysis using the TM4 

analysis suite [11, 12].  Expression is shown as normalized RPKM values. SAM was conducted using a two-sample paired 

statistic. The 40 samples (including replicates) are listed at the bottom of each expression graph.
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Several methods 

including BaySeq, 

Weighted-voting, 

SAM, and SVM-RFE 

were employed to 

discover gene 

panels:

35 genes selected 

by at least 2 of the 

4 methods.

7 genes selected 

by at least 3 of the 

4 methods.
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Samples Samples

Figure 6.  35 top classifier genes identifed by at least 2 

methods cluster according to initial and relapse states.

Figure 7.  Combining methods perform best at separating initial and relapse states (shown here 

by PCA on normalized read counts for the 35 genes identified by at least 2 statistical methods).
PCA on normalized 

read counts using 35 

genes identified by 

at least 2 methods.  

These genes provide 

excellent sample 

separation and 

include several 

genes known to be 

related to cancer, 

malignancy, or 

leukemia. The same 

result is shown on 

the right in three 

principle 

components. Blue: 

relapse; Red: initial

SNPs were detected in all RNA-Seq samples using Bioscope v1.3. Total (all SNP) dbSNP concordance ranged from 

~80% to ~90% depending upon the desired stringency level in diBayes.  SNPs in the relapse cases were compared to 

the initial samples to identify SNPs unique to the relapse condition for each individual.  These “relapse unique” SNPs 

were examined to determine whether any were shared across individuals in the study.  SNPs shared by 2 or more ALL 

sufferers fall into many genes which are annotated in known cancer pathways or associated with cancer-related 

annotation terms according to the DAVID genome analysis system.

Table 1. The relapse state contains many 

SNPs not seen in the initial state.

Table 2. Multiple individuals share SNPs 

that are unique to the relapse state
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RNA samples were extracted using the TriZOL method 

from bone marrow samples obtained at diagnosis and relapse 

from five children with B-progenitor ALL (10 samples in total).  

Samples were prepared with the SOLiD Total RNA-Seq kit [1] and 

barcoded for multiplex fragment sequencing.  Each of the 10 

samples were barcoded and sequenced on 4 slides on SOLiD 3 

instruments (10 samples x 4 slides = 40 barcode sequencing 

samples) as 50-mer fragments. 

SOLiD system results were processed using the BioscopeTM

v1.2.1 Whole Transcriptome pipeline.  Analysis consisted of 

mapping the short reads to the genome and to annotated exon 

regions.  Read counting was performed with custom scripts and 

the HTSeq [2] module in R.  Principle component analysis, 

hierarchical clustering [3,4], and weighted-voting [5] methods 

were performed in GenePattern [6].  SAM [7,8,9,10] was 

performed in the TM4 Analysis Suite [11,12].  SVM-RFE [13,14] 

was performed in the SPIDER [15] machine learning toolbox in 

MATLAB® software [16].  BaySe q[17] analysis was conducted in 

the R language.

Whole Transcriptome 

Analysis is available in 

LifeScopeTM

For Research Use Only. Not intended for any animal or human therapeutic or diagnostic use. 

Condition 1 Condition 2
from Hardcastle and Kelley [17]

RESULTS 
Figure 1.  Average Exon Coverage per Sample: Aggregate ~6X-8X non-

redundant Exome coverage, and ~15X primary Exome coverage per child.
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